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Accelerator Physics Issues for Run IIAccelerator Physics Issues for Run II

� Interesting AP issues, many of which 
have been presented earlier:
– Tevatron:  beam-beam, halo development and 

collimation, orbits & apertures, instabilities, 
lattice, etc.

– Main Injector:  emittance growth, injection 
match, coalescing, transition crossing, etc.

– Antiproton Source:  beam-gas, IBS, lattice,
chromaticities, damping systems, etc.

– Proton Source:  space charge, injection, 
energy deposition, instabilities, etc.

– Recycler: …
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Support from Beam Physics DepartmentSupport from Beam Physics Department

� Injectors, Recycler
– Booster

• Energy deposition calculations
– Beam loss and radiation studies,collimation system design and installation of 

primary and secondary collimators.

• Injection Lambertson Magnet upgrade
• Space charge simulations (w/ P. Spentzouris, et al.)
• Transition crossing simulations

Booster L−6 collimator shielding      MARS14
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Support from Beam Physics Dept. (cont’d)Support from Beam Physics Dept. (cont’d)

– Main Injector  -- Coalescing calculations; instabilities
– Recycler  -- Injection, transfers; lattice issues; 

longitudinal calculations

� Support for Future Run II issues
• Beam-beam 

– 132 nsec operation
• Crossing angles, tune footprints, etc.

– BB �� compensation (electron lens)
• Slip-stacking / barrier bucket
• Electron cooling

� Other: NuMI, C0/Btev, LHC; FNPL;   computing (BD unix
cluster and parallel cluster admin.)

� Other projects (PD, LC, ���) slowed down (essentially 
stopped), and efforts redirected toward Run II…
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Physics Support for Run IIPhysics Support for Run II
This talk will concentrate mostly on important Tevatron issues :

– Lattice efforts -- helical orbits, aperture, …
– Beam-beam effects – tunes, dynamic aperture
– Longitudinal instabilities
– Energy deposition / backgrounds

Stages of a store:
• Proton only, central orbit and on helix
• Antiproton injection; cogging
• Ramping to high energy
• Collisions – initiation, HEP store
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Luminosity ParametersLuminosity Parameters
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Beam Behavior at InjectionBeam Behavior at Injection
� Emittance dilution occurs during transfer; transfer line 

tuning and Beam Line Tuners are helping
� Magnet Effects

– Tunes, chromaticities, coupling – drift with time
• Magnet measurements � feed-forward drift compensation

– Resonance driving terms
• “shuffling” in 1980’s generated low driving terms; later years, 

magnets shuffled according to quench characteristics; 
however, driving terms – while larger – are still small enough

� Dynamic aperture explored on central orbit, on helix, 
with large/small (coalesced/uncoalesced) momentum 
spread 

� Transverse instabilities
– Chromaticity studies, octupole studies attempted to cure
– Transverse dampers helping now

� Longitudinal instabilities – dancing bunches (more later)
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Apertures and Orbits…Apertures and Orbits…
� To date:  lifetimes at injection are dominated by physical 

aperture (C0 vertical aperture, in particular – few σ from 
beam centers)

� Helix at Injection
– The original (design) (or, “new”) helix using 2 separators
– Due to tight vertical aperture at C0, 4 separators used, 

producing the “new-new” helix
– Investigating impact of increasing C0 aperture, and 

usefulness of increasing the helix separation
– Next aperture issue – A0 straight section
– Also – gains to be made using 4 or more separators during 

injection/ramping?
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C0 ApertureC0 Aperture

� Unnecessary “abort” Lambertsons generate small vertical 
aperture

– helix adjusted (4 sep.’s rather than 2) from its design to 
produce small vertical separation at this location at injection

– Lambertson nonlinearities studied; not an issue for operation 
(B. Erdelyi)
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C0 Aperture (cont’d)C0 Aperture (cont’d)
� Options:

– Replace Lambertsons with warm MI dipole 
magnets

– Reconfigure straight section with cryo magnets 
(as in other Tev straight sections)

• Option for moving – but maintaining – synch-light 
monitor has been proposed (J. Johnstone)

– Effects of nonlinearities of MI magnets have been 
analyzed (T. Sen) and are small 

– Gain from increased aperture…
• allows for either

– More room for larger emittance beams
– Room to increase p-pbar separation
– …or both (mostly second option!)
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C0 Aperture (cont’d) C0 Aperture (cont’d) ---- J.J. JohnstoneJohnstone

Plots start at F0

Current helix moves C0 
separation to horizontal 
plane

Removing C0 restriction 
allows for larger overall 
separation
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C0 Aperture (cont’d)C0 Aperture (cont’d)
� If C0 vertical aperture restriction is removed, then can go 

back to the original design helix, giving smaller variations 
of beam separation around the ring

� Can also consider other helix schemes for injection
– Consider using more than 2 separators during injection with 

the increased aperture; area of present studies

Helical orbit at 150 GeV using 8 
separators ( J. Johnstone).  

Minimum separation (outside of 
A0,C0) is 8σ, average is 10σ.   
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Next:      A0 OpticsNext:      A0 Optics
� With C0 vertical aperture restriction 

removed, and original design helix restored, 
the closest approach of the two beams (in 
units of beam size) occurs in A0 region –
“high beta” optics used for slow resonant 
extraction

� Thus, consider changing A0 optics to the 
original “standard” Collins straight section

� Work on-going to investigate C0 and A0 
options; decisions tied to timing of long 
shutdown and  scheduling/manpower issues 
for implementation in the tunnel
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A0 Optics and Helical OrbitA0 Optics and Helical Orbit

Courtesy 
J. Johnstone
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Cogging StagesCogging Stages
� Three cogging stages as inject antiprotons into Tevatron
� At each stage, lifetimes correlated with antiproton 

emittance, and depends upon bunch number
� Dynamic aperture calculations carried out
� Also observed:

– Proton lifetime changes during antiproton injection; do the 
“weak” pbars influence the “strong” protons?

Proton train
4 pbar bunches
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Pre/Early-Run studies
15πemittance, dp/p=0.4e-4 (1σ),
νx,y=(0.585,0.575), Original helix

Injection Dynamic Aperture Calculations (M. Xiao)

Present Conditions
25πemittance, dp/p=13e-4 (3σ),

νx,y=(0.583,0.575), “new-new” helix

(x0,y0)
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Ramping to High EnergyRamping to High Energy
� Tunes, chromaticity and coupling wandered during start 

of ramp; snap-back algorithms tuned, improvements 
made

� Losses through the Ramp     (T. Sen, F. Schmidt, et al.)

– Study performed with 36 proton (only) bunches, with 
different characteristics

– Varied -- momentum spread (coalescing), emittances
(scraping), intensities (Booster turns) 

– Measured over time: intensities, emittances, ramp 
efficiencies, lifetimes at 150 GeV, etc.

– Strong correlation of ramp efficiency with bunch length --> 
longitudinal scraping
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Losses through the RampLosses through the Ramp(T.(T. SenSen, F. Schmidt), F. Schmidt)

Main Injector bunch length at 150 GeV 
is ~2.5 nsec; increases by ~1-2 nsec 
upon injection into Tevatron

•Ramping efficiency worse for 
longer bunch lengths

•If could be preserved, would 
give 1.5 nsec (rms) bunches at 
980 GeV, rather than 2.2 nsec 
� +16% gain in luminosity 
(hour glass)
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Collisions at High EnergyCollisions at High Energy
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∆p/p = 3 x10-4

Tracking for 105 turns

DA ~ Np-0.27

980 GeV Dynamic Aperture (Sen, Xiao)

Have calculated effects on pbars due 
to proton bunch intensity, tunes, etc., …

Bare tunes 4D DA 6D DA (δp = 3 × 10−4)
(〈DA〉, DAmin) (〈DA〉, DAmin)

A0 0.585, 0.575 (10.0, 9.0) (7.8, 6.0)
A1 0.575, 0.569 (9.2, 7.0) (5.1, 4.0)
A2 0.577, 0.571 (9.3, 8.0) (7.5, 6.0)
A3 0.579, 0.573 (9.4, 9.0) (8.1, 7.0)
A4 0.583, 0.577 (9.8, 9.0) (7.6, 6.0)
A5 0.585, 0.579 (9.6, 8.0) (7.5, 7.0)
A6 0.587, 0.581 (9.5, 8.0) (7.5, 6.0)
A7 0.575, 0.585 (11.0, 9.0) (8.6, 7.0)
A8 0.577, 0.587 (10.7, 9.0) (8.4, 8.0)
A9 0.579, 0.589 (10.5, 9.0) (7.6, 5.0)
A10 0.581, 0.591 (10.0, 8.0) (7.0, 5.0)
A11 0.583, 0.593 (9.5, 6.0) (4.8, 3.0)
A12 0.585, 0.595 (8.5, 6.0) (1.9, 1.0)
A13 0.551, 0.561 (10.9, 9.0) (7.2, 5.0)
A14 0.553, 0.562 (10.7, 9.0) (6.2, 5.0)
A15 0.555, 0.564 (10.2, 9.0) (7.2, 6.0)
A16 0.556, 0.566 (9.9, 8.0) (5.7, 3.0)
A17 0.558, 0.568 (11.0, 9.0) (5.4, 3.0)
A18 0.560, 0.570 (10.5, 8.0) (5.4, 3.0)

Table 7: Dynamic aperture, both 4D and 6D, calculated after 105 turns at different tunes shown in Figure 18.
All beam-beam interactions were included. A0 is the nominal tune, A1, A2, A17 and A18 are close to 7th order
resonances while A12 is close to 5th order resonances. We observe that at tunes away from these low order
resonances the dynamic aperture does not change significantly.

Tracking results:
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� Prediction for higher intensities; awaiting verification…
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980 980 GeVGeV Dynamic Aperture   Dynamic Aperture   (T.(T. SenSen, M., M. XiaoXiao))

Compare with experiment …
•Effects on losses, lifetimes qualitatively 
agree with dynamic aperture calculations
•Pbar bunch 12 has better lifetime; 
bunch 8 is worse
•Emittance exchange observed as 
crossing coupling resonance (pbars); not 
seen for protons

Tracking studies can aid in determining good 
working points
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Pbar Pbar Dynamic ApertureDynamic Aperture
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IR Coupling Investigations …IR Coupling Investigations …
� Transverse Coupling in IR’s     (B. Erdelyi, et al.)

– Wish to understand IR optics  – CDF,  D0  estimate that 
�* ~ 41 cm, 43 cm, respectively (should be 35 cm)

– Was issue in Run I   -- rolled triplet quads (~8 mrad!)
– Studies performed on B0 (CDF) region over three study 

periods; still to do: D0 region
– Assume design model in region for computing transfer 

matrices, but rolled triplet magnets allowed; influence of 
detector magnets neglected

– H&V BPM measurements made of responses to local 
orbit distortions through region; 64 orbit measurement 
produced 64x4=256 equations in 3 variables (for each 
triplet)

– IR’s have local skew quads; measurements made with 
these magnets both on and off.
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IR coupling investigations …IR coupling investigations …
� Transverse Coupling in IR’s -- results for B0 (CDF)

– Roll angles obtained (linear fitting procedure):

Promising method;  T-B-T BPM system would greatly increase 
resolution of the method

Will continue for D0, perhaps other regions of the Tevatron
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Lattice investigations …Lattice investigations …
� While CDF “roll” looks OK, x-y coupling correction is 

higher than during previous run (N. Gelfand, et al.)
– When tuned to be uncoupled, and skew quad circuits 

turned off, ��min ~ 0.2
– Models, using operational currents, do not agree with 

observation (by large factors)– unknown source(s) of 
coupling

– Observation:  vertical dipole correctors in E-F-A sectors 
have large average offsets

• Around ring,  <�y> = 16 �rad; <�x> = 0.7 �rad
• Through portions of E-F-A,    <�y> = 80 �rad seen

– Alignment measurements in above regions show rolls of 
2-8 mrad (worse in dipoles than in quads); appears to 
change over time

– Plan to do beam-based measurements of these regions, 
as in IR studies, to look for coupling sources
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Tevatron Tevatron Dipole CorrectorsDipole Correctors
Horizontal Corrector Settings
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Lattice investigations …Lattice investigations …

� Systematic offset in magnets due to rolls and corrections:
– Rolled quads – linear coupling
– Systematically rolled dipoles, corrected by vertical 

steering magnets –
• “Scalloped” orbit through the dipole magnets
• Generates ~1-2 mm vertical offsets through dipoles

– Therefore, more coupling due to b2 feed-down;small, 
but noticeable

– Other nonlinear effects?
• Being investigated further…

Quad,
BPM (=0),vert corr

Rolled dipole,
= vert error

Max vert displacement
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Longitudinal IssuesLongitudinal Issues
� Bunch length growth at 150 GeV
� Losses during the Ramp
� Beam instabilities – dancing bunches
� DC beam generation during store

� Effects –
– Hour-glass effect:    �(s) = �* + s2/�*

• since �z > �* -- > makes a hit on luminosity
– Dispersion mismatches � transverse emittance growth 

during transfers (observed effect)
– Larger beam size � larger beam-beam separation

– Vertical dispersion in Tevatron – affecting luminosity?  
(probably not; should be small effect)

mmmm 6.1)6160/()100)(24( =⋅ ππ mmm 8.2)107.0)(4( 3 =× −
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HourHour--glass effectglass effect

Presently operate around 60 cm (~2 nsec)
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InstabilitiesInstabilities---- Dancing BunchesDancing Bunches

� Long-term coherent synchrotron oscillations of 
proton bunches observed in Tevatron, no damping of 
oscillations, no increase in emittance

� Not seen since longitudinal dampers commissioned; 
will return??   Would like to understand source…

Mountain range plot of
uncoalesced bunches 
dancing in the Tevatron, 
July 2002; here, 3 from 
a train of ~30; courtesy 
R. Moore.
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Dancing bunchesDancing bunches

� Charge distribution different for coalesced /
uncoalesced bunches; bunches oscillate at 
differing frequencies

� So far, uncoalesced data studied in detail
� Purely inductive impedance + a narrow rf 

cavity mode � a modified Keil-Schnell 
criterion (Balbekov, Ivanov, 1991) -- yields 
|Z/n|thresh that can sustain such an oscillation 

� For Tevatron, at ~1010/bunch, Z/n ~ 2 Ohm 
(numerically in right ball park)

� Computer model…
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Dancing bunchesDancing bunches (V. (V. BalbekovBalbekov))

� Compute longitudinal density ����� assuming

� Compute corresponding longitudinal electric 
field; gives equation of motion of the form:

( t � t/Ts )

� For Tevatron, Q = -6 x 10-13 N (i Z/n[Ohm])
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Dancing bunchesDancing bunches (V.(V. BalbekovBalbekov))

Linear approximation separates to give…
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Computer simulation:
5000 particles, Q=-0.1, φ0=0.5

Work continues…

For φ0=const., gives 2 frequencies;
mimics observations
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DC Beam GenerationDC Beam Generation

� Develops immediately at injection, causing 
losses when ramp – full buckets at transfer

� But, also develops during store
– Mechanisms unknown; Tevatron Electron Lens 

(TEL) used as cure

� Collaborative studies with experiments (A.
Tollestrup, CDF, for example) -- sensitive 
measurements of DC beam migrating into 
abort gaps
– Indicates protons being lost from buckets at rate 

of several 106/sec or so
– Beam-Gas effects and subsequent loss rates are 

well understood
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DC Beam GenerationDC Beam Generation
� Phase noise, voltage noise most likely candidates; probably 

more sensitive to phase noise (motion near unstable fixed 
points)

– Random turn-to-turn phase jitter:

dS/dt =  1 eV-sec/hour

� ��rms = 0.4o (too big)
• Note:  would also lead to 2� mm-mr/hour transverse emittance growth due to 

dispersion in cavities…

– Frequency spectrum:  d�2/dt ~ 2�fs
2 S�(fs)

• fs ~ 36 Hz @ 980 GeV for center of bunch; goes to 0 Hz at separatrix;      
S�(fs) ~ 1.5 x 10-9 rad2/Hz for observed growth rate

• possible mechanical vibration in cavities; produces similar spectral 
density; investigating (w/ Tev Dept, RF Dept, TD, …)

– Possibly transverse modulation & synchro-betatron coupling:
• Motion of closed orbit due to varying transverse field gives changing 

path length ( �C = D�� ), and hence varying phase
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DC Beam GenerationDC Beam Generation

D 4 m= θmax 5.615 10
6−×= fm 60 Hz= fs 35.638 Hz= gmax 0.752deg=

Initial conditions: φ0 π− 170− deg= dp
0

0= max φ π−( ) 2.697 10
3× deg=
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Numerical example: 5 �rad steering error (at D=4m) oscillating at 
60 Hz (synchrotron frequency is 36 hz) can produce 0.5 degree phase 
oscillations of bunch center – particles near separatrix will leak out…

investigation continuing…
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Energy Deposition     Energy Deposition     ((MokhovMokhov, , DrozhdinDrozhdin,, et al.)et al.)

� Loss rates in B0 (especially) and D0 an issue
� Present system designed for cure of beam losses 

due to slow emittance growth – works well as 
designed; about 0.1% of particles escape system

� Large angle elastic scattering off residual gas nuclei 
and Coulomb scattering, between collimators and 
IPs, result in higher loss rates at detectors

� Detailed MARS model of A-sector, B0 and CDF 
(including Roman Pots) for beam loss and radiation 
studies -- suggests use of “shadow collimators”
– 0.6 m  “mask” just before last dipoles entering IP
– 13�x and 20�y away from beam
– Reduces backgrounds by about 10 times
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Energy Deposition     Energy Deposition     ((DrozhdinDrozhdin))

0.6-M MASKS IN BØ and DØ
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Collaborative EffortsCollaborative Efforts
� Collaborative Efforts

– SLAC, LBNL  -- Long-range beam-beam simulations, 
using particle-in-cell modeling

• Preliminary results, adding more physics (does not 
represent real situation yet)

– ORNL – Space charge calculations for Booster 
• (also working w/ P. Spentzouris, et al., FNAL/PPD)

– UM, LBNL  -- Recycler modeling, using MaryLie
– CERN, BNL  -- physicist exchange; F. Schmidt, W. 

Fisher, F. Pilat, V. Ptitsyn so far; more to come
– ANL, IUCF  -- AP groups meeting bi-monthly; so far, 

sharing computational / experimental experiences on 
instability issues


